{6,3}(0,2)

Statistics

genus c1, orientable
Schläfli formula c{6,3}
V / F / E c 6 / 3 / 9
notesreplete is not a polyhedral map permutes its vertices oddly
vertex, face multiplicity c1, 3
Petrie polygons
3, each with 6 edges
rotational symmetry groupD6×C3, with 18 elements
full symmetry group36 elements.
C&D number cR1.t0-2′
The statistics marked c are from the published work of Professor Marston Conder.

Relations to other Regular Maps

Its dual is {3,6}(0,2).

It is self-Petrie dual.

It can be 3-fold covered to give {6,3}(3,3).
It is a 3-fold cover of {6,3}(1,1).

It can be rectified to give rectification of {6,3}(0,2).

It can be obtained from the 3-hosohedron by Eppstein tunnelling.

It can be obtained by truncating {3,6}(1,1).

Its half shuriken is N5:{6,6}.

It can be stellated (with path <1,-1;-1,1>) to give S4:{6,6}2,3 . The density of the stellation is 4.

It is a member of series ο .
It is a member of series ο° .

List of regular maps in orientable genus 1.

Underlying Graph

Its skeleton is K3,3.

Other Regular Maps

General Index

The image on this page is copyright © 2010 N. Wedd