genus ^{c} | 56, orientable |

Schläfli formula ^{c} | {21,8} |

V / F / E ^{c} | 42 / 16 / 168 |

notes | |

vertex, face multiplicity ^{c} | 2, 7 |

4, each with 84 edges | |

rotational symmetry group | 336 elements. |

full symmetry group | 672 elements. |

its presentation ^{c} | < r, s, t | t^{2}, (sr)^{2}, (st)^{2}, (rt)^{2}, (sr^{‑2})^{2}, s^{8}, (sr^{‑1}s^{2})^{2}, r^{‑21} > |

C&D number ^{c} | R56.10′ |

The statistics marked ^{c} are from the published work of Professor Marston Conder. |

Its Petrie dual is

It can be built by 7-splitting

List of regular maps in orientable genus 56.

Orientable | |

Non-orientable |