{7,3} regular maps

This page lists regular maps with Schläfli formula {7,3}, of Euler characteristic up to 200.

GenusNameSchläfliV / F / EmV, mFnotesC&D no.images
3the Klein map, S3:{7,3}{7,3}856 / 24 / 841,1 replete singular is a polyhedral map permutes its vertices evenly R3.1′2
8NN8.1′{7,3}984 / 36 / 1261,1 replete singular N8.1′0
7S7:{7,3}{7,3}18168 / 72 / 2521,1 replete singular R7.1′0
15NN15.1′{7,3}13182 / 78 / 2731,1 replete singular N15.1′0
14R14.3′{7,3}14364 / 156 / 5461,1 replete singular R14.3′0
14R14.2′{7,3}26364 / 156 / 5461,1 replete singular R14.2′0
14R14.1′{7,3}12364 / 156 / 5461,1 replete singular R14.1′0
17C17.1′{7,3}16448 / 192 / 6721,1 replete singular Chiral C17.1′0
147NN147.1′{7,3}152030 / 870 / 30451,1 replete singular N147.1′0

Other Regular Maps

General Index