Regular maps in the orientable surface of genus 67

NameSchläfliV / F / EmV, mFnotes C&D no.imageswire-
frames
R67.1{4,48}1612 / 144 / 288 8,1 replete R67.100
R67.1′{48,4}16144 / 12 / 288 1,8 replete R67.1′00
R67.2{4,48}1612 / 144 / 288 8,1 replete R67.200
R67.2′{48,4}16144 / 12 / 288 1,8 replete R67.2′00
R67.3{4,136}1364 / 136 / 272 68,2series m replete R67.3(see series m)0
R67.3′{136,4}136136 / 4 / 272 2,68series l replete R67.3′(see series l)0
R67.4{4,136}1364 / 136 / 272 68,1 replete R67.400
R67.4′{136,4}136136 / 4 / 272 1,68 replete R67.4′00
R67.5{4,268}1342 / 134 / 268 268,2series h Faces share vertices with themselves R67.5(see series h)0
R67.5′{268,4}134134 / 2 / 268 2,268series j Faces share vertices with themselves R67.5′(see series j)0
R67.10{8,10}1248 / 60 / 240 1,2 replete R67.1000
R67.10′{10,8}1260 / 48 / 240 2,1 replete R67.10′00
R67.9{8,10}648 / 60 / 240 2,2 replete R67.900
R67.9′{10,8}660 / 48 / 240 2,2 replete R67.9′00
C67.1{9,12}7236 / 48 / 216 2,3 replete Chiral C67.100
C67.1′{12,9}7248 / 36 / 216 3,2 replete Chiral C67.1′00
R67.11{9,12}7236 / 48 / 216 2,3 replete R67.1100
R67.11′{12,9}7248 / 36 / 216 3,2 replete R67.11′00
R67.6{6,36}1812 / 72 / 216 9,1 replete R67.600
R67.6′{36,6}1872 / 12 / 216 1,9 replete R67.6′00
R67.7{6,69}1386 / 69 / 207 23,3 replete R67.700
R67.7′{69,6}13869 / 6 / 207 3,23 replete R67.7′00
R67.8{6,201}1342 / 67 / 201 201,3series p Faces share vertices with themselves R67.8(see series p)0
R67.8′{201,6}13467 / 2 / 201 3,201series q Faces share vertices with themselves R67.8′(see series q)0
R67.12{12,42}568 / 28 / 168 14,2 replete R67.1200
R67.12′{42,12}5628 / 8 / 168 2,14 replete R67.12′00
C67.2{15,30}2211 / 22 / 165 3,3 replete Chiral C67.200
C67.2′{30,15}2222 / 11 / 165 3,3 replete Chiral C67.2′00
C67.3{15,30}2211 / 22 / 165 3,3 replete Chiral C67.300
C67.3′{30,15}2222 / 11 / 165 3,3 replete Chiral C67.3′00
R67.13{16,40}808 / 20 / 160 20,8 replete R67.1300
R67.13′{40,16}8020 / 8 / 160 8,20 replete R67.13′00
R67.14{16,40}808 / 20 / 160 20,8 replete R67.1400
R67.14′{40,16}8020 / 8 / 160 8,20 replete R67.14′00
R67.17{48,48}66 / 6 / 144 24,16 replete R67.1700
R67.17′{48,48}66 / 6 / 144 16,24 replete R67.17′00
R67.18{48,48}126 / 6 / 144 24,16 replete R67.1800
R67.18′{48,48}126 / 6 / 144 16,24 replete R67.18′00
R67.19{48,48}66 / 6 / 144 24,24 replete R67.1900
R67.20{48,48}126 / 6 / 144 24,24 replete R67.2000
R67.15{36,72}84 / 8 / 144 36,18 replete R67.1500
R67.15′{72,36}88 / 4 / 144 18,36 replete R67.15′00
R67.16{36,72}84 / 8 / 144 36,9 replete R67.1600
R67.16′{72,36}88 / 4 / 144 9,36 replete R67.16′00
R67.22{136,136}42 / 2 / 136 136,136 R67.2200
R67.23{136,136}22 / 2 / 136 136,136series k trivial R67.23(see series k)0
R67.21{135,270}21 / 2 / 135 270,135series z trivial Faces share vertices with themselves Vertices share edges with themselves R67.21(see series z)0
R67.21′{270,135}22 / 1 / 135 135,270series i trivial Faces share vertices with themselves Faces share edges with themselves R67.21′(see series i)0
R67.24{268,268}21 / 1 / 134 268,268series s trivial Faces share edges with themselves Faces share vertices with themselves Vertices share edges with themselves R67.24(see series s)0

Other Regular Maps

General Index